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The numerical transfer matrix for the partition function of discrete lattice models is generalized to allow the
calculation of the density of states {1(E), and the restricted density of states Q(E,M). Given Q(E,M) the
partition function is expressed as a polynomial in the variables x=e®* and y=e~#. These algorithms are
illustrated with calculations for the Ising model on finite square lattices. The zeros of the partition function are
examined in both the complex x and y planes. Finite size scaling analysis of the zeros leads to very accurate
estimates for the critical temperature and critical exponents.

PACS number(s): 05.50.+q, 05.70.—a, 64.60.Cn, 75.10.Hk

INTRODUCTION

In an important paper Binder [1] showed that the partition
function for discrete lattice models, and in particular the
Ising model, can be calculated exactly by the numerical
transfer matrix. In a more recent paper, Bhanot [2] devised a
method which uses the Binder algorithm to construct the
exact density of states, {)(E). This is done by evaluating the
partition function for several rational values of the tempera-
ture parameter y=e #, and then solving a set of coupled
equations for Q(E).

In this paper I present a method of determining the den-
sity of states directly by a transfer matrix. The method is then
generalized to allow the calculation of the restricted density
of states, which is simply the number of states with fixed
energy and fixed order parameter (magnetization). Given the
restricted density of states the free energy, internal energy,
entropy, specific heat, magnetization, and susceptibility can
be expressed as polynomials in x and y. Finally, a hybrid
algorithm which requires much less computer memory is
presented which gives the partition function at a given tem-
perature for all values of the magnetization. The algorithms
presented here can be applied to any lattice with equally
spaced energy levels (e.g., the g-state Potts model); here the
Ising model is used for illustrative purposes and because it
requires the least computer resources.

The Hamiltonian for the Ising model with exchange con-
stant J=1 is

H=%(_2> (1-5.5)), 1
L,J

where S;=*1 and (ij) label nearest neighbor sites on a two
or three dimensional lattice. As defined in (1) the energy
ranges from O to N, in unit steps [3] where N, is the number
of bonds on the lattice.

The density of states is

Q(E)=Tré(E—H), 2
where 8(E —H) is the Kronecker delta and the trace is over
all the states of the system. The density of states takes on
only integer values, and given )(E) the partition function

for inverse temperature B is a polynomial in y =4,
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Ny

Z(y>=E§0 Q(E)yE. 3)

If one is interested in the magnetic properties of the model
one can define the restricted density of states,

Q(E,M)=Tr[5(E—H)6(M—%2 (1—3,)”. 4)

- The magnetization M defined in (4) ranges from O for the

ferromagnetic spin up state to N for the ferromagnetic spin
down state in steps of two. N is the number of spins on the
lattice. The partition function in a magnetic field, 4, is then

Ns Nb
Z(x,y>=ME=0 Ego Q(M,E)xMyE, (5)

where x=ef",

MICROCANONICAL TRANSFER MATRIX FOR THE
DENSITY OF STATES

For simplicity consider the transfer matrix in two dimen-
sions; the generalization to higher dimensions is straightfor-
ward. The spins are located at the sites of a square lattice of
size L XN with periodic boundary conditions in the trans-
verse direction (length L) and open boundaries in the longi-
tudinal direction (length N). For the first row of L spins we
define

L
0 (E;Sy, ....S)=8E-%2 (1-5:5:41)]. (6)
i=1

The first step in the transfer matrix is to introduce the inter-
action between a spin in the first row with the corresponding
spin in the second row and then trace over the spin in the first
row. For the first spin we have

D(E;S1,85,....8)= 2> oME-L(1
S;==*1

—5181):81,82, .. .,8.). (D)
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Note that the new function defined in (7) has exactly the
same number of arguments as in (6); the amount of memory
needed in each step of the calculation remains fixed.

This process is repeated for each of the spins in the first
row in turn; once all the spins in the first row have been
traced over we are left with a function only of the spins in
the second row. At this point the interactions between spins
in the second row are added to the energy giving

L
w®(E;S!,85,....S)=6 E—%El (1
~

IR A T

(8)

The entire process can now be repeated until finally we have
a function of the spins in the last (Nth) row. The density of
states is given by tracing over the spins in the Nth row,

QE)= 2 e 2 0™(E;S,S,, ... ,S)).
Si=%1 §,=*1 Sp==1
9)

RESTRICTED MICROCANONICAL TRANSFER MATRIX

The above procedure can be modified in a straightforward
way to calculate the restricted density of states, (4). For the
first row one has, instead of (6),

L
o V(M,E;S,,....S))= 5<M— 1> (1-8)) 6(E
i=1

L
—%i; (1—sls,»+1)). (10)

The spins in the first row are traced over in sequence just as
in (7) leading to a new function of the spins in the second
row;

d)(M,E;S{,Sz, L w(l)(M_%(l

. ’SL)= 2
Si==1

_Si),E_%(l_Sisl);Ssz, ce ,SL)- (11)

Once all the spins in a row have been traced over, the func-
tion for the next row is completed as in (8)

L
w(z)(M’EsSl> e 9SL)=G)(M’E_%2 (1
i=1

=8:8i+1)581, - .,S,) (12)
and the restricted density of states is given by

oNM(M,E,S,, ....S;).
(13)

Q(M,E>=S+2 >

T==1 S ==1
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FIG. 1. the restricted entropy S(M,E)=In{}(M, E) for a 6 X6
Ising model with open boundary conditions.

Figure 1 shows the complete histogram for the entropy
S(M,E) for L=6. Note that at low energies the density of
states exhibits a double maximum for magnetizations differ-
ent from zero. This is reflected in the free energy, which -
exhibits a double minimum characteristic of the ordered
phase.

The partition function of the Ising model as a function of
both temperature and magnetic field can now be expressed as
a polynomial in the variables x and y as in (5). However, if
one is only interested in the critical behavior of the model as
a function of the magnetic field, it is sufficient to examine
the zeros of the partition function at the critical value for the
temperature parameter, y., which can be determined in the
usual way from the microcanonical transfer matrix.

RESTRICTED CANONICAL TRANSFER MATRIX

As a final variation [4] of the transfer matrix, the Binder
algorithm can be modified to give the partition function at a
fixed temperature for all values of the magnetization. For
each state of the first row of spins we define

L
oV(M,y;Sy, ....S)= 6<M—%2 (1—S,-))y5“5}1,
i=1
(14)

where E[S] is the energy contributed by the bonds in the first
row as in (6).

The spins in the first row are summed over as before
according to the modified rule

®(M,y;S1,82,...,8.)= 2 oDM-1i(1
Si+=1
—80),y:81, .. .,S)y-S1SV2,

(15)

When all the spins in a row have been summed, the contri-
bution to the restricted partition function from the bonds in
the second row is taken into account exactly as in the Binder
algorithm;
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',Si)yE[{S'}]'
(16)

0P (M,y;S),....8])=a(M,y;S;, ..

Finally, when only the last row of spins remains, the re-
stricted partition function is given by

w(N)(May;Sl P SL)
(17)

Q(M,y)=52 Y

=1 Sp==1

and the full partition function is now a polynomial in x,

NS
Z(x,y):ME:O Q(M,y)xM. (18)

DISCUSSION

The scaling of the computational complexity of the vari-
ous algorithms presented here can be compared with the
Binder algorithm. For an n-component model in d dimen-
sions the memory required by the Binder algorithm is pro-

1@=1)

portional to nn and the time required scales as

nN SnLd_l. For the three variations of the transfer matrix con-
sidered here both the time and memory increase by a factor
of N, for the microcanonical transfer matrix, by N for the
restricted canonical transfer matrix, and by N, XN, for the
restricted microcanonical transfer matrix. It is interesting to
note that the computational complexity of Bhanot’s algo-
rithm and the microcanonical transfer matrix, both of which
yield the density of states, scale in the same way with the
size of the system. The restricted microcanonical transfer
matrix requires the most computational resources, and this
limits its application to relatively small lattices.

Using the microcanonical transfer matrix, the density of
states for Ising models on LXL square lattices for
3=<L=13 have been calculated. We know from the famous
theory of Yang and Lee [5] that the critical behavior of the
model arises in the limit L —o when the zeros of the parti-
tion function close in on the physical part of the real axis.
The scaling of the dominant zero, y, follows from the finite
size scaling form for the free energy;

Re(yo)=y +AL V(1 +a,L™+a,L 2+ ---)
(19)

and
Im(yo)=BL™Y"(1+b, L™ “+b,L 2%+ ...). (20)

In (19) and (20) w is a correction-to-scaling exponent, A, B,
{a;}, and {b;} are constants, and v is the correlation length
exponent.

Following Bhanot, these data can be analyzed by the
method of Bulirsh and Stoer [6,7] (BST). The BST estimate
with @=1.000 for y. is 0.414 213 583(6) which should be
compared with the exact value y2—1=0.414 213562 . .. .
One can also define a sequence of estimates for the leading
scaling exponent, v,
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FIG. 2. Zeros of the partition function in the complex x plane
for a 10X 10 Ising model with open boundary conditions.

In[(L+1)/L]
In({Re[yo(L+1)]—y }/{Re[yo(L)]=y})" o1

v(L)=

Applying the BST procedure (again with w=1) to these data
yields »=1.000 000 7(5) which should be compared with
the exact value v=1.

By a theorem of Yang and Lee [5] we know that the zeros
of the partition function in the complex x plane lie on the
unit circle. Figure 2 shows that zeros of the partition function
for y=y, for L=10.

At the critical value y=y, . the partition function for an
infinite lattice is nonanalytic at x=1 (A=0). From the scal-
ing form of the free energy the argument [8] of the dominant
zero in the complex x plane approaches the real axis as

O(L)=CL 71+ CL™“+C,L™%°+...), (22)

where for the Ising model in two dimensions y,= 3.

The restricted microcanonical transfer matrix was used to
calculate (M ,E) for sizes 3=<L =<10. The zeros of the par-
tition function in the complex x plane were then calculated
for y=y.. For lattices of sizes 11<<L <13 the restricted ca-

TABLE I. Arguments of the dominant zero in the complex x
plane for lattices of size 3<L<13 (T=T,).

L 6o
3 0.471 998 042 060
4 0.287 611 162 550
5 0.188 399 320 772
6 0.135 505 282 011
7 0.102 460 660 627
8 0.080 370 500 991
9 0.064 840 294 164
10 0.053 487 453 592
11 0.044 925 672 320
12 0.038 302 191 885
13 0.033 068 293 166
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nonical transfer matrix with y=y,. was used to find
Q(x,y.) and again the zeros were calculated. The arguments
of the zero closest to the critical point for 3<<L <13 are
listed in Table 1.

Estimates for the magnetic scaling exponent can be cal-
culated as in (21) and the BST analysis with @=1.000 yields
the estimate y,=1.876(2) which agrees very well with the
exact result.

CONCLUSIONS

The Binder algorithm is easily generalized to allow the
calculation of the density of states and the restricted density
of states. Given (M ,E), the partition function at any tem-
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perature and in an arbitrary magnetic field can be evaluated,
and it is possible to study the analytic properties of the par-
tition function in both the complex y (temperature) and x
(magnetic field) planes. In addition, the free energy, specific
heat, order parameter, and susceptibility are also given for
any temperature and magnetic field; the restricted density of
states yields a complete thermodynamic description of the
system.
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